Purification of Enterocytozoon bieneusi Spores from Stool Specimens by Gradient and Cell Sorting Techniques

Author:

Kucerova Zuzana123,Moura Hercules2,Leitch Gordon J.1,Sriram Rama2,Bern Caryn2,Kawai Vivian4,Vargas Daniel4,Gilman Robert H.5,Ticona Eduardo6,Vivar Aldo7,Visvesvara Govinda S.2

Affiliation:

1. Department of Physiology, Morehouse School of Medicine

2. Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention

3. Atlanta Research and Education Foundation, Atlanta, Georgia

4. Asociacion Benefica PRISMA

5. Bloomberg School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland

6. Hospital Dos de Mayo

7. Hospital Arzobispo Loayza, Lima, Peru

Abstract

ABSTRACT A three-step method for the purification of Enterocytozoon bieneusi spores from stool specimens was developed. The primary process of purification of the spores from bacterial contaminants involved Percoll gradient centrifugation followed by additional separation using cesium chloride density gradient centrifugation. The cesium chloride-isolated spores were further purified using a flow cytometer with cell sorting capabilities. Sorting was performed without the use of antibodies, fluorochromes, or dyes, leaving the sorted spores in their native state, which appears to be less destructive for spores. When quantified by flow cytometry using tubes with known numbers of highly fluorescent polystyrene beads, the sorted material showed a slight decrease in light scatter characteristics compared with the slightly larger Encephalitozoon species spores. Although the overall recovery of the E. bieneusi spores was low, calcofluor and Gram chromotrope staining, indirect immunofluorescence assay, and transmission electron microscopy revealed that the sorted material was highly purified and contained large numbers of E. bieneusi spores and relatively few bacteria and other debris. The sorted material appeared to be sufficiently pure and could be used for in vitro culture and for the development of a variety of diagnostic reagents as well as in studying the genome of E. bieneusi and host-parasite interactions.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3