Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures

Author:

Willimsky G1,Bang H1,Fischer G1,Marahiel M A1

Affiliation:

1. Fachbereich Chemie/Biochemie, Philipps-Universität Marburg, Germany.

Abstract

A new class of cold shock-induced proteins that may be involved in an adaptive process required for cell viability at low temperatures or may function as antifreeze proteins in Escherichia coli and Saccharomyces cerevisiae has been identified. We purified a small Bacillus subtilis cold shock protein (CspB) and determined its amino-terminal sequence. By using mixed degenerate oligonucleotides, the corresponding gene (cspB) was cloned on two overlapping fragments of 5 and 6 kb. The gene encodes an acidic 67-amino-acid protein (pI 4.31) with a predicted molecular mass of 7,365 Da. Nucleotide and deduced amino acid sequence comparisons revealed 61% identity to the major cold shock protein of E. coli and 43% identity to a family of eukaryotic DNA binding proteins. Northern RNA blot and primer extension studies indicated the presence of one cspB transcript that was initiated 119 bp upstream of the initiation codon and was found to be induced severalfold when exponentially growing B. subtilis cell cultures were transferred from 37 degrees C to 10 degrees C. Consistent with this cold shock induction of cspB mRNA, a six- to eightfold induction of a cspB-directed beta-galactosidase synthesis was observed upon downshift in temperature. To investigate the function of CspB, we inactivated the cold shock protein by replacing the cspB gene in the B. subtilis chromosome with a cat-interrupted copy (cspB::cat) by marker replacement recombination. The viability of cells of this mutant strain, GW1, at freezing temperatures was strongly affected. However, the effect of having no CspB in GW1 could be slightly compensated for when cells were preincubated at 10 degrees C before freezing. These results indicate that CspB belongs to a new type of stress-inducible proteins that might be able to protect B. subtilis cells from damage caused by ice crystal formation during freezing.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3