Biochar-Bacillus consortium for a sustainable agriculture: physicochemical and soil stability analyses

Author:

Ajeng Aaronn Avit,Abdullah RosazlinORCID,Ling Tau Chuan

Abstract

AbstractBiochar has various agricultural applications, including the promising use as a carrier for beneficial microorganisms. However, most recent research has demonstrated the possible attachment or immobilization of a single bacterial species onto biochar rather than a consortium of microbes for biotechnological applications. Thus, an assessment on the potential of oil palm kernel shell (OPKS) biochar as a biofilm-producing Bacillus consortium carrier through optimization study on the operating and environmental factors influencing the biofilm adhesion was conducted using response surface methodology (RSM) and the subsequent soil stability and storage potential of the formulation. The highest Bacillus population   was observed  at temperature  33 °C, agitation speed of 135 rpm, at a neutral pH of 7.5 with 10% (w/w) of sago starch as the co-carbon source. The adhesion of Bacillus on OPKS biochar following the optimized conditions fitted pseudo-second order (PSO) of kinetic modelling (R2 = 0.998). The optimized formulation was subjected to storage in different temperatures and in vitro soil incubation which revealed that the Bacillus biofilm-adhered OPKS biochar may be stored up to 4 months with minimum range of live Bacillus viability reaching 107 CFU g-1 of biochar which is within the minimum range of acceptable biofertilizer viability (106 CFU mL-1). Formulation that is viable in room storage can be easily incorporated into current agricultural distribution networks that do not have refrigeration. This work highlighted the physicochemical and soil stability qualities of optimized Bacillus consortium adhesion on biochar for agricultural usage.Article Highlights Integration of biochar with Bacillus consortium biofilms  served as novel organic fertilizer in agriculture. The biochar-integrated Bacillus biofilms persisted in challenging temperature and environment. Biochar-integrated Bacillus biofilm fertilizer fostered the attainment of  the Sustainable Development Goals Graphical Abstract

Funder

Institut Pengurusan dan Pemantauan Penyelidikan, Universiti Malaya

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Soil Science,Environmental Science (miscellaneous),Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3