Kinetics of Polynucleotide Phosphorylase: Comparison of Enzymes from Streptomyces and Escherichia coli and Effects of Nucleoside Diphosphates

Author:

Chang Samantha A.1,Cozad Madeline1,Mackie George A.2,Jones George H.1

Affiliation:

1. Department of Biology, Emory University, Atlanta, Georgia 30319

2. Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3

Abstract

ABSTRACT We examined the activity of polynucleotide phosphorylase (PNPase) from Streptomyces coelicolor , Streptomyces antibioticus , and Escherichia coli in phosphorolysis using substrates derived from the rpsO-pnp operon of S. coelicolor . The Streptomyces and E. coli enzymes were both able to digest a substrate with a 3′ single-stranded tail although E. coli PNPase was more effective in digesting this substrate than were the Streptomyces enzymes. The k cat for the E. coli enzyme was ca. twofold higher than that observed with the S. coelicolor enzyme. S. coelicolor PNPase was more effective than its E. coli counterpart in digesting a substrate possessing a 3′ stem-loop structure, and the K m for the E. coli enzyme was ca. twice that of the S. coelicolor enzyme. Electrophoretic mobility shift assays revealed an increased affinity of S. coelicolor PNPase for the substrate possessing a 3′ stem-loop structure compared with the E. coli enzyme. We observed an effect of nucleoside diphosphates on the activity of the S. coelicolor PNPase but not the E. coli enzyme. In the presence of a mixture of 20 μM ADP, CDP, GDP, and UDP, the K m for the phosphorolysis of the substrate with the 3′ stem-loop was some fivefold lower than the value observed in the absence of nucleoside diphosphates. No effect of nucleoside diphosphates on the phosphorolytic activity of E. coli PNPase was observed. To our knowledge, this is the first demonstration of an effect of nucleoside diphosphates, the normal substrates for polymerization by PNPase, on the phosphorolytic activity of that enzyme.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3