Streptomyces coelicolor Polynucleotide Phosphorylase Can Polymerize Nucleoside Diphosphates under Phosphorolysis Conditions, with Implications for the Degradation of Structured RNAs

Author:

Jones George H.1,Mackie George A.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada

Abstract

ABSTRACT We have examined the ability of wild-type polynucleotide phosphorylase (PNPase) from Streptomyces coelicolor and two mutant forms of the enzyme, N459D and C468A, to function in the polymerization of ADP and in the phosphorolysis of RNA substrates derived from the S. coelicolor rpsO-pnp operon. The wild-type enzyme was twice as active in polymerization as N459D and four times as active as C468A. The k cat / K m value for phosphorolysis of a structured RNA substrate by N459D was essentially the same as that observed for the wild-type enzyme, while C468A was 50% as active with this substrate. A mixture of all four common nucleoside diphosphates increased the k cat / K m for phosphorolysis of the structured substrate by the wild-type enzyme by a factor of 1.7 but did not affect phosphorolysis catalyzed by N459D or C468A. We conducted phosphorolysis of the structured substrate in the presence of nucleoside diphosphates and labeled the 3′ ends of the products of those reactions using [ 32 P]pCp. Digestion of the end-labeled RNAs and display of the products on a sequencing gel revealed that wild-type S. coelicolor PNPase was able to synthesize RNA 3′ tails under phosphorolysis conditions while the N459D and C468A mutants could not. The wild-type enzyme did not add 3′ tails to a substrate that already possessed an unstructured 3′ tail. We propose a model in which the transient synthesis of 3′ tails facilitates the phosphorolysis of structured substrates by Streptomyces PNPase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3