Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry

Author:

Scidmore M A1,Rockey D D1,Fischer E R1,Heinzen R A1,Hackstadt T1

Affiliation:

1. Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840, USA.

Abstract

Chlamydiae replicate intracellularly within a vacuole that has recently been characterized as intersecting an exocytic pathway. One of the initial events during chlamydial infection is the expression of a chlamydial early gene product(s) that effectively isolates the inclusion from the endocytic-lysosomal pathway and makes it fusogenic with sphingomyelin-containing exocytic vesicles. Associated with this change in vesicular interaction is the delivery of the vacuole to the peri-Golgi region of the host cell. Inhibition of chlamydial early transcription or translation causes Chlamydia trachomatis-containing vesicles to remain dispersed throughout the cytoplasm, where they eventually fuse with lysosomes. Chlamydiae that have been internalized by Fc-mediated endocytosis also avoid lysosomal digestion by a mechanism that requires chlamydial protein synthesis. These results suggest that the vesicular interactions of the chlamydial inclusion are defined by parasite-directed modification of the endocytic vesicle rather than by the route of internalization.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3