Vaccinia virus morphogenesis is interrupted when expression of the gene encoding an 11-kilodalton phosphorylated protein is prevented by the Escherichia coli lac repressor

Author:

Zhang Y F1,Moss B1

Affiliation:

1. Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892.

Abstract

A conditional lethal vaccinia virus mutant, which constitutively expresses the Escherichia coli lac repressor and has the lac operator controlling the F18R gene (the 18th open reading frame of the HindIII F fragment of the vaccinia virus strain WR genome) encoding an 11-kDa protein, was previously shown to be dependent on the inducer isopropyl-beta-D-thiogalactoside (IPTG) for replication (Y. Zhang and B. Moss, Proc. Natl. Acad. Sci. USA 88:1511-1515, 1991). Further studies indicated that the yield of infectious virus could be regulated by titration with IPTG and that virus production was arrested by IPTG removal at appropriate times. Under nonpermissive conditions, an 11-kDa protein reactive with antiserum raised to a previously described DNA-binding phosphoprotein (S. Y. Kao and W. R. Bauer, Virology 159:399-407, 1987) was not synthesized, indicating that the latter is the product of the F18R gene. In the absence of IPTG, replication of viral DNA and the subsequent resolution of concatemeric DNA molecules appeared normal. Omission of IPTG did not alter the kinetics of early and late viral protein synthesis, although the absence of the 11-kDa polypeptide was noted by labeling infected cells with [35S]methionine or [32P]phosphate. Pulse-chase experiments revealed that proteolytic processing of the major viral structural proteins, P4a and P4b, was inhibited under nonpermissive conditions, suggesting a block in virus maturation. Without addition of IPTG, the failure of virus particle formation was indicated by sucrose gradient centrifugation of infected cell lysates and by the absence of vaccinia virus-mediated pH-dependent cell fusion. Electron microscopic examination of infected cells revealed that immature virus particles, with aberrant internal structures, accumulated when synthesis of the 11-kDa DNA-binding protein was prevented.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3