Vaccinia Virus Defective Particles Lacking the F17 Protein Do Not Inhibit Protein Synthesis: F17, a Double-Edged Sword for Protein Synthesis?

Author:

Beaud Georges1,Costa Fleur1,Klonjkowski Bernard1,Piumi François1ORCID,Coulpier Muriel1,Drillien Robert2,Monsion Baptiste1ORCID,Mohd Jaafar Fauziah1ORCID,Attoui Houssam1ORCID

Affiliation:

1. INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France

2. Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596/CNRS-UMR7104, Université Louis Pasteur, F-67404 Strasbourg, France

Abstract

Vaccinia virus (Orthopoxvirus) F17 protein is a major virion structural phosphoprotein having a molecular weight of 11 kDa. Recently, it was shown that F17 synthesised in infected cells interacts with mTOR subunits to evade cell immunity and stimulate late viral protein synthesis. Several years back, we purified an 11 kDa protein that inhibited protein synthesis in reticulocyte lysate from virions, and that possesses all physico-chemical properties of F17 protein. To investigate this discrepancy, we used defective vaccinia virus particles devoid of the F17 protein (designated iF17− particles) to assess their ability to inhibit protein synthesis. To this aim, we purified iF17− particles from cells infected with a vaccinia virus mutant which expresses F17 only in the presence of IPTG. The SDS-PAGE protein profiles of iF17− particles or derived particles, obtained by solubilisation of the viral membrane, were similar to that of infectious iF17 particles. As expected, the profiles of full iF17− particles and those lacking the viral membrane were missing the 11 kDa F17 band. The iF17− particles did attach to cells and injected their viral DNA into the cytoplasm. Co-infection of the non-permissive BSC40 cells with a modified vaccinia Ankara (MVA) virus, expressing an mCherry protein, and iF17− particles, induced a strong mCherry fluorescence. Altogether, these experiments confirmed that the iF17− particles can inject their content into cells. We measured the rate of protein synthesis as a function of the multiplicity of infection (MOI), in the presence of puromycin as a label. We showed that iF17− particles did not inhibit protein synthesis at high MOI, by contrast to the infectious iF17 mutant. Furthermore, the measured efficiency to inhibit protein synthesis by the iF17 mutant virus generated in the presence of IPTG, was threefold to eightfold lower than that of the wild-type WR virus. The iF17 mutant contained about threefold less F17 protein than wild-type WR. Altogether these results strongly suggest that virion-associated F17 protein is essential to mediate a stoichiometric inhibition of protein synthesis, in contrast to the late synthesised F17. It is possible that this discrepancy is due to different phosphorylation states of the free and virion-associated F17 protein.

Funder

UMR 1161 Virologie INRAE-ANSES-EnvA

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3