Weak Rolling Adhesion Enhances Bacterial Surface Colonization

Author:

Anderson Brett N.1,Ding Albert M.1,Nilsson Lina M.2,Kusuma Kaoru1,Tchesnokova Veronika3,Vogel Viola2,Sokurenko Evgeni V.3,Thomas Wendy E.1

Affiliation:

1. Department of Bioengineering, University of Washington, Seattle, Washington

2. Laboratory for Biologically Oriented Materials, Department of Materials, ETH Zurich, Zürich, Switzerland

3. Department of Microbiology, University of Washington, Seattle, Washington

Abstract

ABSTRACT Bacterial adhesion to and subsequent colonization of surfaces are the first steps toward forming biofilms, which are a major concern for implanted medical devices and in many diseases. It has generally been assumed that strong irreversible adhesion is a necessary step for biofilm formation. However, some bacteria, such as Escherichia coli when binding to mannosylated surfaces via the adhesive protein FimH, adhere weakly in a mode that allows them to roll across the surface. Since single-point mutations or even increased shear stress can switch this FimH-mediated adhesion to a strong stationary mode, the FimH system offers a unique opportunity to investigate the role of the strength of adhesion independently from the many other factors that may affect surface colonization. Here we compare levels of surface colonization by E. coli strains that differ in the strength of adhesion as a result of flow conditions or point mutations in FimH. We show that the weak rolling mode of surface adhesion can allow a more rapid spreading during growth on a surface in the presence of fluid flow. Indeed, an attempt to inhibit the adhesion of strongly adherent bacteria by blocking mannose receptors with a soluble inhibitor actually increased the rate of surface colonization by allowing the bacteria to roll. This work suggests that (i) a physiological advantage to the weak adhesion demonstrated by commensal variants of FimH bacteria may be to allow rapid surface colonization and (ii) antiadhesive therapies intended to prevent biofilm formation can have the unintended effect of enhancing the rate of surface colonization.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3