Two-Component Flavin-Dependent Riboflavin Monooxygenase Degrades Riboflavin in Devosia riboflavina

Author:

Kanazawa Hiroshi1,Shigemoto Ryosuke1,Kawasaki Yukie1,Oinuma Ken-Ichi1,Nakamura Akira1,Masuo Shunsuke1,Takaya Naoki1

Affiliation:

1. Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan

Abstract

ABSTRACT The actinobacterium Microbacterium maritypicum splits riboflavin (vitamin B 2 ) into lumichrome and d -ribose. However, such degradation by other bacteria and the involvement of a two-component flavin-dependent monooxygenase (FMO) in the reaction remain unknown. Here we investigated the mechanism of riboflavin degradation by the riboflavin-assimilating alphaproteobacterium Devosia riboflavina (formerly Pseudomonas riboflavina ). We found that adding riboflavin to bacterial cultures induced riboflavin-degrading activity and a protein of the FMO family that had 67% amino acid identity with the predicted riboflavin hydrolase (RcaE) of M. maritypicum MF109. The D. riboflavina genome clustered genes encoding the predicted FMO, flavin reductase (FR), ribokinase, and flavokinase, and riboflavin induced their expression. This finding suggests that these genes constitute a mechanism for utilizing riboflavin as a carbon source. Recombinant FMO (rFMO) protein of D. riboflavina oxidized riboflavin in the presence of reduced flavin mononucleotide (FMN) provided by recombinant FR (rFR), oxidized FMN and NADH, and produced stoichiometric amounts of lumichrome and d -ribose. Further investigation of the enzymatic properties of D. riboflavina rFMO indicated that rFMO-rFR coupling accompanied O 2 consumption and the generation of enzyme-bound hydroperoxy-FMN, which are characteristic of two-component FMOs. These results suggest that D. riboflavina FMO is involved in hydroperoxy-FMN-dependent mechanisms to oxygenize riboflavin and a riboflavin monooxygenase is necessary for the initial step of riboflavin degradation. IMPORTANCE Whether bacteria utilize either a monooxygenase or a hydrolase for riboflavin degradation has remained obscure. The present study found that a novel riboflavin monooxygenase, not riboflavin hydrolase, facilitated this process in D. riboflavina . The riboflavin monooxygenase gene was clustered with flavin reductase, flavokinase, and ribokinase genes, and riboflavin induced their expression and riboflavin-degrading activity. The gene cluster is uniquely distributed in Devosia species and actinobacteria, which have exploited an environmental niche by developing adaptive mechanisms for riboflavin utilization.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3