Carboxypeptidase G and pterin deaminase metabolic pathways degrade folic acid in Variovorax sp. F1

Author:

You Yungmi,Doi Yuki,Maeda Norifumi,Masuo Shunsuke,Takeshita Norio,Takaya Naoki

Abstract

Abstract Background Folic acid (FA) is a synthetic vitamin (B9) and the oxidized form of a metabolic cofactor that is essential for life. Although the biosynthetic mechanisms of FA are established, its environmental degradation mechanism has not been fully elucidated. The present study aimed to identify bacteria in soil that degrade FA and the mechanisms involved. Results We isolated the soil bacterium Variovorax sp. F1 from sampled weed rhizospheres in a grassland and investigated its FA degradation mechanism. Cultured Variovorax sp. F1 rapidly degraded FA to pteroic acid (PA), indicating that FA hydrolysis to PA and glutamate. We cloned the carboxypeptidase G (CPG) gene and found widely distributed paralogs within the Variovorax genus. Recombinant CPG preferred FA and deaminofolic acid as substrates, indicating its involvement in FA degradation by Variovorax. Prolonged culture of Variovorax sp. F1 resulted in decreased rates of deaminofolic acid (DFA) and deaminopteroic acid (DPA) accumulation. This indicated that the deamination reaction also comprised a route of FA degradation. We also identified an F1 gene that was orthologous to the pterin deaminase gene (Arad3529) of Agrobacterium radiobacter. The encoded protein deaminated FA and PA to DFA and DPA, which was consistent with the deamination activity of FA and PA in bacterial cell-free extracts. Conclusion We discovered that the two enzymes required for FA degradation pathways in isolates of Variovorax sp. F1 comprise CPG and pterin deaminase, and that DFA and PA are intermediates in the generation of DPA.

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3