A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei

Author:

Sanati H1,Belanger P1,Fratti R1,Ghannoum M1

Affiliation:

1. Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, California 90509, USA.

Abstract

Voriconazole (UK-109,496) is a novel triazole derivative with potent broad-spectrum activity against various fungi, including some that are inherently resistant to fluconazole, such as Candida krusei. In this study we compared the effect of subinhibitory concentrations of voriconazole and fluconazole on sterol biosynthesis of fluconazole-resistant and -susceptible Candida albicans strains, as well as C. krusei, in an effort to delineate the precise mode of action of voriconazole. Voriconazole MICs ranged from 0.003 to 4 microg/ml, while fluconazole MICs ranged from 0.25 to >64 microg/ml. To investigate the effects of voriconazole and fluconazole on candidal sterols, yeast cells were grown in the absence and presence of antifungals. In untreated C. albicans controls, ergosterol was the major sterol (accounting for 53.6% +/- 2.2% to 71.7% +/- 7.8% of the total) in C. albicans and C. krusei strains. There was no significant difference between the sterol compositions of the fluconazole-susceptible and -resistant C. albicans isolates. Voriconazole treatment led to a decrease in the total sterol content of both C. albicans strains tested. In contrast, exposure to fluconazole did not result in a significant reduction in the total sterol content of the three candidal strains tested (P > 0.5). Gas-liquid chromatographic analysis revealed profound changes in the sterol profiles of both C. albicans strains and of C. krusei in response to voriconazole. This antifungal agent exerted a similar effect on the sterol compositions of both fluconazole-susceptible and -resistant C. albicans strains. Interestingly, a complete inhibition of ergosterol synthesis and accumulation of its biosynthetic precursors were observed in both strains treated with voriconazole. In contrast, fluconazole partially inhibited ergosterol synthesis. Analysis of sterols obtained from a fluconazole-resistant C. albicans strain grown in the presence of different concentrations of voriconazole showed that this agent inhibits ergosterol synthesis in a dose-dependent manner. In C. krusei, voriconazole significantly inhibited ergosterol synthesis (over 75% inhibition). C. krusei cells treated with voriconazole accumulated the following biosynthetic intermediates: squalene, 4,14-dimethylzymosterol, and 24-methylenedihydrolanosterol. Accumulation of these methylated sterols is consistent with the premise that this agent functions by inhibiting fungal P-450-dependent 14alpha-demethylase. As expected, treating C. krusei with fluconazole minimally inhibited ergosterol synthesis. Importantly, our data indicate that voriconazole is more effective than fluconazole in blocking candidal sterol biosynthesis, consistent with the different antifungal potencies of these compounds.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference27 articles.

1. Opportunistic mycoses in the immunocompromised hosts: experience in a cancer center and review;Anaissie E. J.;Clin. Infect. Dis.,1992

2. Fluconazole penetration into cerebrospinal fluid: implications for treating fungal infections of the central nervous system;Arndt C. A. S.;J. Infect. Dis.,1988

3. Comparison of miconazole- and ketoconazole-induced release of K~ from Candida species;Beggs W. H.;J. Antimicrob. Chemother.,1983

4. Belanger P. H. Sanati R. Fratti A. Ibrahim and M. Ghannoum. 1996. Effect of UK-109 496 on growth and ultrastructure of fluconazole-sensitive (CA S ) and fluconazole-resistant (CA R ) Candida albicans strains abstr. F.75. In Abstracts of the 96th General Meeting of the American Society for Microbiology 1996. American Society for Microbiology Washington D.C.

5. Fungal infections in cancer patients;Bodey G. P.;Ann. N.Y. Acad. Sci.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3