DNA replication by a DNA-membrane complex extracted from Bacillus subtilis: site of initiation in vitro and initiation potential of subcomplexes

Author:

Laffan J,Firshein W

Abstract

A DNA-membrane complex extracted from Bacillus subtilis was studied further as a model system for initiation of bacterial DNA replication in vitro. Of three subcomplexes purified from the crude complex by a combination of CsCl and sucrose gradient centrifugation, the synthetic capability of only one was inhibited significantly by streptovaricin, a known inhibitor of RNA primer formation. A selective enrichment in the level of this subcomplex was obtained by manipulating a thymine-requiring mutant. The synthetic capabilities of an enriched and nonenriched DNA-membrane complex were compared in the presence and absence of streptovaricin. Although the rate and extent of DNA synthesis per unit of protein were approximately the same in the absence of the antibiotic, there was a much greater inhibition of synthesis shown by the enriched complex in the presence of streptovaricin. Although the amount of DNA present in the putative initiation subcomplex was less than 0.3 to 0.4% of the total DNA present in the crude complex, such DNA, except for a few quantitative differences, was still representative of genomic DNA. Newly synthesized DNA hybridized to specific origin- and non-origin-derived restriction fragments of the B. subtilis genome. However, when an elongation inhibitor (ddCTP) was added, hybridization of such DNA to almost all of the nonorigin fragments disappeared or was reduced drastically, whereas origin region hybridization patterns remained strong. The highest level of hybridization in the origin region occurred with a BamHI (B7) restriction fragment of 5.6 kilobases that has been implicated by others as one site initiation in vivo (N. Ogasawara, M. Seiki, and H. Yoshikawa, Nature (London) 281:702-704, 1979; S. J. Seror-Laurent and G. Henckes, Proc. Natl. Acad. Sci. USA 82:3586-3590, 1985).

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3