Affiliation:
1. Laboratory of Molecular Biology, National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20014
Abstract
The minimal growth-inhibitory amount of either hexachlorophene (HCP) or decanoate stopped growth, respiration, adenosine 5′-triphosphate synthesis, and amino acid transport ofBacillus subtilisin a culture containing amino acids and citrate as carbon sources. The electron transport system was not affected by this dose. Addition of 27.8 mM glucose or 10 mM malate to an inhibited culture did not reverse the binding of HCP or decanoate to the cells, but it allowed resumption of growth, respiration, and adenosine 5′-triphosphate synthesis, as the glucose or malate then supplied the needed carbon. The addition of glucose or malate did not reverse amino acid transport inhibition caused by decanoate, but it did reverse that due to HCP. However, if the dose of HCP was raised in the presence of glucose or malate, only growth and amino acid transport were affected; this indicates that both HCP and decanoate act at their minimal growth inhibitory doses by inhibiting substrate transport. As active transport of amino acids and ketoacids depends on the proton gradient and the membrane potential of the cells, we conclude that the primary effect of these lipophilic acids is the destruction of the proton-motive force.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献