Wheat Germ Cell-Free System-Based Production of Malaria Proteins for Discovery of Novel Vaccine Candidates

Author:

Tsuboi Takafumi12,Takeo Satoru1,Iriko Hideyuki2,Jin Ling2,Tsuchimochi Masateru1,Matsuda Shusaku1,Han Eun-Taek1,Otsuki Hitoshi3,Kaneko Osamu3,Sattabongkot Jetsumon4,Udomsangpetch Rachanee5,Sawasaki Tatsuya1,Torii Motomi3,Endo Yaeta1

Affiliation:

1. Cell-Free Science and Technology Research Center

2. Venture Business Laboratory, Ehime University, Matsuyama, Ehime 790-8577, Japan

3. Department of Molecular Parasitology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan

4. Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand

5. Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand

Abstract

ABSTRACT One of the major bottlenecks in malaria research has been the difficulty in recombinant protein expression. Here, we report the application of the wheat germ cell-free system for the successful production of malaria proteins. For proof of principle, the Pfs25, PfCSP, and PfAMA1 proteins were chosen. These genes contain very high A/T sequences and are also difficult to express as recombinant proteins. In our wheat germ cell-free system, native and codon-optimized versions of the Pfs25 genes produced equal amounts of proteins. PfCSP and PfAMA1 genes without any codon optimization were also expressed. The products were soluble, with yields between 50 and 200 μg/ml of the translation mixture, indicating that the cell-free system can be used to produce malaria proteins without any prior optimization of their biased codon usage. Biochemical and immunocytochemical analyses of antibodies raised in mice against each protein revealed that every antibody retained its high specificity to the parasite protein in question. The development of parasites in mosquitoes fed patient blood carrying Plasmodium falciparum gametocytes and supplemented with our mouse anti-Pfs25 sera was strongly inhibited, indicating that both Pfs25-3D7/WG and Pfs25-TBV/WG retained their immunogenicity. Lastly, we carried out a parallel expression assay of proteins of blood-stage P. falciparum . The PCR products of 124 P. falciparum genes chosen from the available database were used directly in a small-scale format of transcription and translation reactions. Autoradiogram testing revealed the production of 93 proteins. The application of this new cell-free system-based protocol for the discovery of malaria vaccine candidates will be discussed.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3