High-Throughput Generation of P. falciparum Functional Molecules by Recombinational Cloning

Author:

Aguiar João Carlos,LaBaer Joshua,Blair Peter L.,Shamailova Victoria Y.,Koundinya Malvika,Russell Joshua A.,Huang Fengying,Mar Wenhong,Anthony Robert M.,Witney Adam,Caruana Sonia R.,Brizuela Leonardo,Sacci John B.,Hoffman Stephen L.,Carucci Daniel J.

Abstract

Large-scale functional genomics studies for malaria vaccine and drug development will depend on the generation of molecular tools to study protein expression. We examined the feasibility of a high-throughput cloning approach using the Gateway system to create a large set of expression clones encoding Plasmodium falciparum single-exon genes. Master clones and their ORFs were transferred en masse to multiple expression vectors. Target genes (n = 303) were selected using specific sets of criteria, including stage expression and secondary structure. Upon screening four colonies per capture reaction, we achieved 84% cloning efficiency. The genes were subcloned in parallel into three expression vectors: a DNA vaccine vector and two protein expression vectors. These transfers yielded a 100% success rate without any observed recombination based on single colony screening. The functional expression of 95 genes was evaluated in mice with DNA vaccine constructs to generate antibody against various stages of the parasite. From these, 19 induced antibody titers against the erythrocytic stages and three against sporozoite stages. We have overcome the potential limitation of producing large P. falciparum clone sets in multiple expression vectors. This approach represents a powerful technique for the production of molecular reagents for genome-wide functional analysis of the P. falciparum genome and will provide for a resource for the malaria resource community distributed through public repositories.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3