Allosteric Regulation of the Discriminative Responsiveness of Retinoic Acid Receptor to Natural and Synthetic Ligands by Retinoid X Receptor and DNA

Author:

Mouchon Arnaud1,Delmotte Marie-Hélène1,Formstecher Pierre1,Lefebvre Philippe1

Affiliation:

1. INSERM U459, Faculté de Médecine Henri Warembourg, 59045 Lille Cedex, France

Abstract

ABSTRACT Transcriptional activation by retinoids is mediated through two families of nuclear receptors, all- trans -retinoic acid (RARs) and 9- cis retinoic acid receptors (RXRs). Conformationally restricted retinoids are used to achieve selective activation of RAR isotype α, β or γ, which reduces side effects in therapeutical applications. Synthetic retinoids mimic some of all- trans retinoic acid biological effects in vivo but interact differently with the ligand binding domain of RARα and induce distinct structural transitions of the receptor. In this report, we demonstrate that RAR-selective ligands have distinct quantitative activation properties which are reflected by their abilities to promote interaction of DNA-bound human RXRα (hRXRα)-hRARα heterodimers with the nuclear receptor coactivator (NCoA) SRC-1 in vitro. The hormone response element core motifs spacing defined the relative affinity of liganded heterodimers for two NCoAs, SRC-1 and RIP140. hRXRα activating function 2 was critical to confer hRARα full responsiveness but not differential sensitivity of hRARα to natural or synthetic retinoids. We also provide evidence showing that lysines located in helices 3 and 4, which define part of hRARα NCoA binding surface, contribute differently to (i) the transcriptional activity and (ii) the interaction of RXR-RAR heterodimers with SRC-1, when challenged by either natural or RAR-selective retinoids. Thus, ligand structure, DNA, and RXR exert allosteric regulations on hRARα conformation organized as a DNA-bound heterodimer. We suggest that the use of physically distinct NCoA binding interfaces may be important in controlling specific genes by conformationally restricted ligands.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3