Carbon monoxide:methylene blue oxidoreductase from Pseudomonas carboxydovorans

Author:

Meyer O,Schlegel H G

Abstract

The enzyme carbon monoxide:methylene blue oxidoreductase from CO autotrophically grown cells of Pseudomonas carboxydovorans strain OM5, was purified to homogeneity. The enzyme was obtained in 26% yield and was purified 36-fold. The enzyme was stable for at least 6 days, had a molecular weight of 230,000, gave a single protein and activity band on polyacrylamide gel electrophoresis, and was homogeneous by the criterion of sedimentation equilibrium. Sodium dodecyl sulfate gel electrophoresis revealed a single band of molecular weight 107,000. Carbon monoxide:methylene blue oxidoreductase did not catalyze reduction of pyridine or flavin nucleotides but catalyzed the oxidation of CO to CO2 in the presence of methylene blue, thionine, toluylene blue, dichlorophenolindophenol, or pyocyanine under strictly anaerobic conditions. The visible spectrum revealed maxima at 405 and 470 nm. The millimolar extinction coefficients were 43.9 (405 nm) and 395.5 (275 nm), respectively. Absorption at 470 nm decreased in the presence of dithionite, and the spectrum was not affected by the substrate CO. Maximum reaction rates were found at pH 7.0 and 63 degrees C; temperature dependence followed the Arrhenius equation, with an activation energy (delta H degree) of 36.8 kJ/mol (8.8 kcal/mol). The apparent Km was 53 microM for CO. The purified enzyme was incapable of oxidizing methane, methanol, or formaldehyde in the presence of methylene blue as electron acceptor.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. [MoCu]‐Dependent Carbon Monoxide Dehydrogenases;Encyclopedia of Inorganic and Bioinorganic Chemistry;2024-04

2. Microbial oxidation of atmospheric trace gases;Nature Reviews Microbiology;2022-04-12

3. Exploiting Aerobic Carboxydotrophic Bacteria for Industrial Biotechnology;One-Carbon Feedstocks for Sustainable Bioproduction;2021

4. Role of Carbon Monoxide in Host–Gut Microbiome Communication;Chemical Reviews;2020-10-22

5. The oxidation-reduction and electrocatalytic properties of CO dehydrogenase from Oligotropha carboxidovorans;Biochimica et Biophysica Acta (BBA) - Bioenergetics;2020-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3