The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds

Author:

Colby J,Stirling D I,Dalton H

Abstract

1. Methane mono-oxygenase of Methylococcus capsulatus (Bath) catalyses the oxidation of various substituted methane derivatives including methanol. 2. It is a very non-specific oxygenase and, in some of its catalytic properties, apparently resembles the analogous enzyme from Methylomonas methanica but differs from those found in Methylosinus trichosporium and Methylomonas albus. 3. CO is oxidized to CO2. 4. C1-C8 n-alkanes are hydroxylated, yielding mixtures of the corresponding 1- and 2-alcohols; no 3- or 4-alcohols are formed. 5. Terminal alkenes yield the corresponding 1,2-epoxides. cis- or trans-but-2-ene are each oxidized to a mixture of 2,3-epoxybutane and but-2-en-1-ol with retention of the cis or trans configuration in both products; 2-butanone is also formed from cis-but-2-ene only. 6. Dimethyl ether is oxidized. Diethyl ether undergoes sub-terminal oxidation, yielding ethanol and ethanal in equimolar amounts. 7. Methane mono-oxygenase also hydroxylates cyclic alkanes and aromatic compounds. However, styrene yields only styrene epoxide and pyridine yields only pyridine N-oxide. 8. Of those compounds tested, only NADPH can replace NADH as electron donor.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3