Enhanced Immunogenicity of an HIV-1 DNA Vaccine Delivered with Electroporation via Combined Intramuscular and Intradermal Routes

Author:

Mann Jamie F. S.1,McKay Paul F.1,Fiserova Anezka1,Klein Katja1,Cope Alethea1,Rogers Paul1,Swales Julie1,Seaman Michael S.2,Combadiere Behazine34,Shattock Robin J.1

Affiliation:

1. Mucosal Infection & Immunity Group, Section of Infectious Diseases, Imperial College London, St Mary's Campus, London, United Kingdom

2. Beth Israel Deaconess Medical Center, Center for Virology and Vaccine Research, Boston, Massachusetts, USA

3. Laboratoire d'Immunologie Cellulaire, INSERM U543, Université Pierre et Marie Curie—Paris, Paris, France

4. Université Pierre et Marie Curie—Paris, Paris, France

Abstract

ABSTRACT It is accepted that an effective prophylactic HIV-1 vaccine is likely to have the greatest impact on viral transmission rates. As previous reports have implicated DNA-priming, protein boost regimens to be efficient activators of humoral responses, we sought to optimize this regimen to further augment vaccine immunogenicity. Here we evaluated single versus concurrent intradermal (i.d.) and intramuscular (i.m.) vaccinations as a DNA-priming strategy for their abilities to elicit humoral and cellular responses against a model HIV-1 vaccine antigen, CN54-gp140. To further augment vaccine-elicited T and B cell responses, we enhanced cellular transfection with electroporation and then boosted the DNA-primed responses with homologous protein delivered subcutaneously (s.c.), intranasally (i.n.), i.m., or transcutaneously (t.c.). In mice, the concurrent priming regimen resulted in significantly elevated gamma interferon T cell responses and high-avidity antigen-specific IgG B cell responses, a hallmark of B cell maturation. Protein boosting of the concurrent DNA strategy further enhanced IgG concentrations but had little impact on T cell reactivity. Interestingly protein boosting by the subcutaneous route increased antibody avidity to a greater extent than protein boosting by either the i.m., i.n., or t.c. route, suggesting that this route may be preferential for driving B cell maturation. Using an alternative and larger animal model, the rabbit, we found the concurrent DNA-priming strategy followed by s.c. protein boosting to again be capable of eliciting high-avidity humoral responses and to also be able to neutralize HIV-1 pseudoviruses from diverse clades (clades A, B, and C). Taken together, we show that concurrent multiple-route DNA vaccinations induce strong cellular immunity, in addition to potent and high-avidity humoral immune responses. IMPORTANCE The route of vaccination has profound effects on prevailing immune responses. Due to the insufficient immunogenicity and protection of current DNA delivery strategies, we evaluated concurrent DNA delivery via simultaneous administration of plasmid DNA by the i.m. and i.d. routes. The rationale behind this study was to provide clear evidence of the utility of concurrent vaccinations for an upcoming human clinical trial. Furthermore, this work will guide future preclinical studies by evaluating the use of model antigens and plasmids for prime-boost strategies. This paper will be of interest not only to virologists and vaccinologists working in the HIV field but also to researchers working in other viral vaccine settings and, critically, to the wider field of vaccine delivery.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3