Intrinsic Human Immunodeficiency Virus Type 1 Resistance of Hematopoietic Stem Cells Despite Coreceptor Expression

Author:

Shen Hongmei1,Cheng Tao1,Preffer Frederick I.1,Dombkowski David1,Tomasson Michael H.2,Golan David E.2,Yang Otto1,Hofmann Wolfgang3,Sodroski Joseph G.3,Luster Andrew D.1,Scadden David T.1

Affiliation:

1. AIDS Research Center, MGH Cancer Center, Divisions of Infectious Diseases and Hematology/Oncology, Massachusetts General Hospital, Department of Medicine,1

2. Division of Hematology/Oncology, Brigham and Women’s Hospital, Department of Biological Chemistry and Molecular Pharmacology,2 and

3. Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology,3 Harvard Medical School, Boston, Massachusetts

Abstract

ABSTRACT Interactions of human immunodeficiency virus type 1 (HIV-1) with hematopoietic stem cells may define restrictions on immune reconstitution following effective antiretroviral therapy and affect stem cell gene therapy strategies for AIDS. In the present study, we demonstrated mRNA and cell surface expression of HIV-1 receptors CD4 and the chemokine receptors CCR-5 and CXCR-4 in fractionated cells representing multiple stages of hematopoietic development. Chemokine receptor function was documented in subsets of cells by calcium flux in response to a cognate ligand. Productive infection by HIV-1 via these receptors was observed with the notable exception of stem cells, in which case the presence of CD4, CXCR-4, and CCR-5, as documented by single-cell analysis for expression and function, was insufficient for infection. Neither productive infection, transgene expression, nor virus entry was detectable following exposure of stem cells to either wild-type HIV-1 or lentivirus constructs pseudotyped in HIV-1 envelopes of macrophage-tropic, T-cell-tropic, or dualtropic specificity. Successful entry into stem cells of a vesicular stomatitis virus G protein-pseudotyped HIV-1 construct demonstrated that the resistance to HIV-1 was mediated at the level of virus-cell membrane fusion and entry. These data define the hematopoietic stem cell as a sanctuary cell which is resistant to HIV-1 infection by a mechanism independent of receptor and coreceptor expression that suggests a novel means of cellular protection from HIV-1.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3