Model for Polymerase Access to the Overlapped L Gene of Respiratory Syncytial Virus

Author:

Fearns Rachel1,Collins Peter L.1

Affiliation:

1. Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892-0720

Abstract

ABSTRACT The last two genes of respiratory syncytial virus (RSV), M2 and L, overlap by 68 nucleotides, an arrangement which has counterparts in a number of nonsegmented negative-strand RNA viruses. Thus, the gene-end (GE) signal of M2 lies downstream of the L gene-start (GS) signal, separated by 45 nucleotides. Since RSV transcription ostensibly is sequential and unidirectional from a single promoter within the 3′ leader region, it was unclear how the polymerase accesses the L GS signal. Furthermore, it was previously shown that 90% of transcripts which are initiated at the L GS signal are polyadenylated and terminated at the M2 GE signal, yielding a short, truncated L mRNA as the major transcription product of the L gene. Despite these apparent down-regulatory features, we show that the accumulation of full-length L mRNA during RSV infection is only sixfold less than that of its upstream neighbor, M2. We used cDNA-encoded genome analogs in an intracellular transcription assay to investigate the mechanism of transcription of the overlapped genes. Expression of L was found to be dependent on sequential transcription from the 3′ end of the genome. Apart from the L GS signal, the only other strict requirement for initiation at L was the M2 GE signal. This implies that the polymerase accesses the L GS signal only following arrival at the M2 GE signal. Thus, polymerase which terminates at the M2 GE signal presumably scans upstream to initiate at the L GS signal. This also would provide a mechanism whereby polymerase which terminates prematurely during transcription of L could recycle from the M2 GE signal to the L GS signal, thereby accounting for the unexpectedly high level of synthesis of full-length L mRNA. The sequence and spacing between the two signals were not critical. Furthermore, the polymerase also was capable of efficiently transcribing from an L GS signal placed downstream of the M2 GE signal, implying that the overlapping arrangement is not obligatory. When copies of the L GS signal were placed concurrently upstream and downstream of the M2 GE signal, both were utilized. This finding indicates that a polymerase situated at a GE signal is capable of scanning for a GS signal in either the upstream or downstream direction and thereafter initiating transcription.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3