Affiliation:
1. Department of Virology, The Hebrew University, Hadassah Medical School, Jerusalem, Israel
Abstract
The interaction of tRNA with the reverse transcriptase (RNA-dependent DNA polymerase) of mammalian RNA viruses, such as Moloney murine leukemia virus and simian sarcoma virus, has been studied. Whereas the purified reverse transcriptase of mammalian viruses sedimented in glycerol gradients as a globular protein with a molecular weight of 70,000, after interaction with tRNA the enzyme cosedimented with a protein of 150,000 molecular weight. The twofold increase in molecular weight could be a result of either two reverse transcriptase molecules complexed with a tRNA or, alternatively, several tRNA molecules bound to a single enzyme polypeptide. The enzyme complexes were dissociated in part upon degradation of the tRNA moiety by pancreatic RNase A. The reverse transcriptase released from virions of Moloney murine leukemia virus, simian sarcoma virus, and avian myeloblastosis virus, by nonionic detergent, migrated faster on glycerol gradients than purified enzyme preparation. This phenomenon was probably due to complex formation between part of the virion enzyme and the tRNA, which is endogenous in virions. Addition of exogenous tRNA was needed, however, to quantitatively complex all the virion reverse transcriptase of Moloney murine leukemia virus and simian sarcoma viruses. The reverse transcriptase of Moloney murine leukemia virus did not show tRNA species specificity in the binding reaction when glycerol gradients were used for assay. Thus, several tRNA species of
Escherichia coli
, yeast, chicken, and rat origin were able to complex with the enzyme. The species specificity in the interaction between tRNA and avian myeloblastosis virus reverse transcriptase was also examined. We demonstrated that under our experimental conditions, this enzyme binds different tRNA species of
E. coli
and yeast as well as tRNA of chicken origin.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献