Affiliation:
1. Department of Pathology, University of California, San Francisco 94143-0506.
Abstract
The selective encapsidation of retroviral RNA requires sequences in the Gag protein, as well as a cis-acting RNA packaging signal (psi site) near the 5' end of the genomic transcript. Gag protein of human immunodeficiency virus type 1 (HIV-1) has recently been found to bind specifically to the HIV-1 psi element in vitro. Here we report studies aimed at mapping features within the genetically defined psi locus that are required for binding of HIV-1 Gag or of its processed nucleocapsid derivative. The full-length HIV-1 Gag (p55) and nucleocapsid (p15) sequences were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. In a gel shift assay containing excess competitor tRNA, affinity-purified GST-p15 and GST-p55 proteins bound to a 206-nucleotide psi RNA element spanning the major splice donor and gag start codons but did not bind to antisense psi transcripts. Quantitative filter-binding assays revealed that both GST-p55 and GST-p15 bound to this RNA sequence with identical affinities (apparent Kd congruent to 5 x 10(-8) M), indicating that all major determinants of psi binding affinity reside within the nucleocapsid portion of Gag. Chemical and RNase accessibility mapping, coupled with computerized sequence analysis, suggested a model for psi RNA structure comprising four independent stem-loops. Filter-binding studies revealed that RNAs corresponding to three of these hypothetical stem-loops can each function as a independent Gag binding site and that each is bound with approximately fourfold-lower apparent affinity than the full-length psi locus. Interaction of Gag with these regions is likely to play a major role in directing HIV-1 RNA encapsidation in vivo.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
286 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献