RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1

Author:

Clever J1,Sassetti C1,Parslow T G1

Affiliation:

1. Department of Pathology, University of California, San Francisco 94143-0506.

Abstract

The selective encapsidation of retroviral RNA requires sequences in the Gag protein, as well as a cis-acting RNA packaging signal (psi site) near the 5' end of the genomic transcript. Gag protein of human immunodeficiency virus type 1 (HIV-1) has recently been found to bind specifically to the HIV-1 psi element in vitro. Here we report studies aimed at mapping features within the genetically defined psi locus that are required for binding of HIV-1 Gag or of its processed nucleocapsid derivative. The full-length HIV-1 Gag (p55) and nucleocapsid (p15) sequences were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli. In a gel shift assay containing excess competitor tRNA, affinity-purified GST-p15 and GST-p55 proteins bound to a 206-nucleotide psi RNA element spanning the major splice donor and gag start codons but did not bind to antisense psi transcripts. Quantitative filter-binding assays revealed that both GST-p55 and GST-p15 bound to this RNA sequence with identical affinities (apparent Kd congruent to 5 x 10(-8) M), indicating that all major determinants of psi binding affinity reside within the nucleocapsid portion of Gag. Chemical and RNase accessibility mapping, coupled with computerized sequence analysis, suggested a model for psi RNA structure comprising four independent stem-loops. Filter-binding studies revealed that RNAs corresponding to three of these hypothetical stem-loops can each function as a independent Gag binding site and that each is bound with approximately fourfold-lower apparent affinity than the full-length psi locus. Interaction of Gag with these regions is likely to play a major role in directing HIV-1 RNA encapsidation in vivo.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3