Increased adhesion as a mechanism of antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus infection

Author:

Lund O1,Hansen J1,Søorensen A M1,Mosekilde E1,Nielsen J O1,Hansen J E1

Affiliation:

1. Physics Department, Technical University of Denmark, Lyngby.

Abstract

Enhancement of human immunodeficiency virus (HIV) infection by complement alone or in conjunction with antibodies was studied experimentally and theoretically. Experimental studies showed that while HIV-positive sera neutralize HIV infection, the addition of fresh complement abrogated neutralization and could even cause enhancement. Enhancement was blocked by anti-complement receptor 2 antibodies, and infection under enhancing conditions could be blocked by soluble CD4. Antibody-dependent complement-mediated enhancement (C'ADE) was dependent on the alternative complement activation pathway, as factor B-deficient serum could enhance only after the addition of factor B. The observed enhancement was also antibody dependent, since the addition of antibodies increased the level of enhancement. Under C'ADE conditions, infection reached a plateau within 5 min and was not caused by activation of cells by factors in the human serum. On the contrary, preincubation of cells with complement decreased the level of enhancement. A theoretical model of HIV infection in vitro which exhibited similar enhancement in an antibody- and complement concentration-dependent way was developed. Model studies indicated that the enhanced infection process could be explained by the fact that virions, because of complement deposition on the surface, bind more efficiently to cells. The model also indicated that the saturation of the enhanced infection process seen after a few minutes could be caused by saturation of the complement receptors. The effect of neutralizing antibodies can thus be overcome by the enhancing effect of complement that facilitates the contact between gp120 and CD4. These studies demonstrate that the main features of the complement-dependent enhancement phenomenon can be understood in terms of a simple mathematical model.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3