Tensor based approach to the numerical treatment of the parameter estimation problems in mathematical immunology

Author:

Zheltkova Valeriya V.1,Zheltkov Dmitry A.2,Grossman Zvi3,Bocharov Gennady A.2,Tyrtyshnikov Eugene E.2

Affiliation:

1. Lomonosov Moscow State University, Leninskie gory, 1, 119991Moscow, Russia

2. Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina, 8, Moscow, Russia

3. Tel Aviv University, Tel Aviv69978, Israel

Abstract

AbstractThe development of efficient computational tools for data assimilation and analysis using multi-parameter models is one of the major issues in systems immunology. The mathematical description of the immune processes across different scales calls for the development of multiscale models characterized by a high dimensionality of the state space and a large number of parameters. In this study we consider a standard parameter estimation problem for two models, formulated as ODEs systems: the model of HIV infection and BrdU-labeled cell division model. The data fitting is formulated as global optimization of variants of least squares objective function. A new computational method based on Tensor Train (TT) decomposition is applied to solve the formulated problem. The idea of proposed method is to extract the tensor structure of the optimized functional and use it for optimization. The method demonstrated a better performance in comparison with some other broadly used global optimization techniques.

Funder

Russian Science Foundation

Russian Foundation for Basic Research

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence for COVID-19 spread modeling;Journal of Inverse and Ill-posed Problems;2024-03-20

2. Multiphysics modelling of immune processes using distributed parameter systems;Russian Journal of Numerical Analysis and Mathematical Modelling;2023-10-01

3. Numerical Algorithm for Source Determination in a Diffusion–Logistic Model from Integral Data Based on Tensor Optimization;Computational Mathematics and Mathematical Physics;2023-09

4. Numerical Algorithm for Source Determination in a Diffusion–Logistic Model from Integral Data Based on Tensor Optimization;Журнал вычислительной математики и математической физики;2023-09-01

5. ABOUT MATHEMATICAL MODELING OF COVID-19;SIB ELECTRON MATH RE;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3