Cloning of wild-type Pseudomonas solanacearum phcA, a gene that when mutated alters expression of multiple traits that contribute to virulence

Author:

Brumbley S M1,Denny T P1

Affiliation:

1. Department of Plant Pathology, University of Georgia, Athens 30602.

Abstract

Pseudomonas solanacearum undergoes a spontaneous mutation that pleiotropically reduces extracellular polysaccharide (EPS) production, endoglucanase activity, and virulence and increases motility. We refer to the process that coordinately affects these traits as phenotype conversion (PC) and the resulting mutants as PC types. Previous research with the wild-type strain AW1 suggested that inactivation of a single locus could mimic phenotype conversion (T. P. Denny, F. W. Makini, and S. M. Brumbley, Mol. Plant-Microbe Interact. 1:215-223, 1988). Additional Tn5 mutagenesis of AW1 generated three more mutants (AW1-81, AW1-82, and AW1-84) that were indistinguishable from the PC type and one slightly leaky mutant (AW1-87); all four had single insertions in the same 4.0-kilobase (kb) EcoRI fragment that were responsible for the PC-like phenotype. Another insertion mutant, AW1-83, which lacks an insertion in this 4.0-kb fragment, resembled the PC type except that it was reversibly induced to produce wild-type levels of EPS when cultured adjacent to AW1. The wild-type region containing the gene that controls traits affected by phenotype conversion in AW1, designated phcA, was cloned on a 2.2-kb DNA fragment that restored all the phcA::Tn5 mutants and 11 independent spontaneous PC-type derivatives of AW1 to wild-type status. Homology with the phcA region was found in diverse wild-type strains of P. solanacearum, although restriction fragment length polymorphisms were seen. No major DNA alterations were observed in the phcA homologous region of PC types from strain AW1 or 82N. PC types from 7 of 11 conjugal strains of P. solanacearum were restored to EPS+ by phcA from AW1; however, only some PC types of strain K60 were restored, whereas others were not. We believe that a functional phcA gene is required to maintain the wild-type phenotype in P. solanacearum, and for most strains phenotype conversion results from a loss of phcA gene expression or the function of its gene product.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference36 articles.

1. Lipopolysaccharide of Pseudomonas solanacearum;Akiyama Y.;Agric. Biol. Chem.,1985

2. A rapid alkaline extraction method for the isolation of plasmid DNA;Birnboim H. C.;Methods Enzymol.,1983

3. Programmed gene rearrangements altering gene expression;Borst P.;Science,1987

4. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn 5-induced avirulent mutants;Boucher C. A.;J. Gen. Microbiol.,1985

5. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered;Boucher C. A.;J. Bacteriol.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3