Affiliation:
1. Department of Plant Pathology, University of Georgia, Athens 30602.
Abstract
Pseudomonas solanacearum undergoes a spontaneous mutation that pleiotropically reduces extracellular polysaccharide (EPS) production, endoglucanase activity, and virulence and increases motility. We refer to the process that coordinately affects these traits as phenotype conversion (PC) and the resulting mutants as PC types. Previous research with the wild-type strain AW1 suggested that inactivation of a single locus could mimic phenotype conversion (T. P. Denny, F. W. Makini, and S. M. Brumbley, Mol. Plant-Microbe Interact. 1:215-223, 1988). Additional Tn5 mutagenesis of AW1 generated three more mutants (AW1-81, AW1-82, and AW1-84) that were indistinguishable from the PC type and one slightly leaky mutant (AW1-87); all four had single insertions in the same 4.0-kilobase (kb) EcoRI fragment that were responsible for the PC-like phenotype. Another insertion mutant, AW1-83, which lacks an insertion in this 4.0-kb fragment, resembled the PC type except that it was reversibly induced to produce wild-type levels of EPS when cultured adjacent to AW1. The wild-type region containing the gene that controls traits affected by phenotype conversion in AW1, designated phcA, was cloned on a 2.2-kb DNA fragment that restored all the phcA::Tn5 mutants and 11 independent spontaneous PC-type derivatives of AW1 to wild-type status. Homology with the phcA region was found in diverse wild-type strains of P. solanacearum, although restriction fragment length polymorphisms were seen. No major DNA alterations were observed in the phcA homologous region of PC types from strain AW1 or 82N. PC types from 7 of 11 conjugal strains of P. solanacearum were restored to EPS+ by phcA from AW1; however, only some PC types of strain K60 were restored, whereas others were not. We believe that a functional phcA gene is required to maintain the wild-type phenotype in P. solanacearum, and for most strains phenotype conversion results from a loss of phcA gene expression or the function of its gene product.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference36 articles.
1. Lipopolysaccharide of Pseudomonas solanacearum;Akiyama Y.;Agric. Biol. Chem.,1985
2. A rapid alkaline extraction method for the isolation of plasmid DNA;Birnboim H. C.;Methods Enzymol.,1983
3. Programmed gene rearrangements altering gene expression;Borst P.;Science,1987
4. Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn 5-induced avirulent mutants;Boucher C. A.;J. Gen. Microbiol.,1985
5. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered;Boucher C. A.;J. Bacteriol.,1987
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献