The dual-specificity phosphatase encoded by vaccinia virus, VH1, is essential for viral transcription in vivo and in vitro

Author:

Liu K1,Lemon B1,Traktman P1

Affiliation:

1. Program in Molecular Biology, Cornell University Graduate School of Medical Sciences, New York, New York, USA.

Abstract

The genetic complexity of vaccinia virus is such that as well as encoding its own transcription and replication machinery, it encodes two protein kinases and a protein phosphatase. The latter enzyme, designated VH1, is a prototype for the dual-specificity class of phosphatases. Here we report that the H1 phosphatase is encapsidated within vaccinia virions and describe the construction of a viral recombinant in which expression of the H1 gene is regulated by the presence or absence of isopropylthiogalactopyranoside (IPTG) in the culture medium. When expression of H1 is repressed, the number of viral particles produced is not compromised but the fraction of these particles which is infectious is significantly reduced. The lack of infectivity of the H1-deficient particles is specifically correlated with their inability to direct the transcription of early genes either in vitro or in vivo. A proximal role for the viral phosphatase in regulating the onset of viral gene expression is implied. Prominent among the encapsidated proteins found to be hyperphosphorylated in H1-deficient virions is the 11-kDa product of the F18 gene; this protein is the major DNA-binding component of the viral nucleoprotein complex. The ability of recombinant H1 phosphatase to reverse this hyperphosphorylation in permeabilized virions strengthens the conclusion that the F18 protein is a bona fide substrate for the H1 phosphatase.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3