Role of the Transporter-Like Sensor Kinase CbrA in Histidine Uptake and Signal Transduction

Author:

Zhang Xue-Xian1,Gauntlett Jonathan C.12,Oldenburg Darby G.12,Cook Gregory M.3,Rainey Paul B.24

Affiliation:

1. Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand

2. New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand

3. Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

4. Max Planck Institute for Evolutionary Biology, Plön, Germany

Abstract

ABSTRACT CbrA is an atypical sensor kinase found in Pseudomonas . The autokinase domain is connected to a putative transporter of the sodium/solute symporter family (SSSF). CbrA functions together with its cognate response regulator, CbrB, and plays an important role in nutrient acquisition, including regulation of hut genes for the utilization of histidine and its derivative, urocanate. Here we report on the findings of a genetic and biochemical analysis of CbrA with a focus on the function of the putative transporter domain. The work was initiated with mutagenesis of histidine uptake-proficient strains to identify histidine-specific transport genes located outside the hut operon. Genes encoding transporters were not identified, but mutations were repeatedly found in cbrA . This, coupled with the findings of [ 3 H]histidine transport assays and further mutagenesis, implicated CbrA in histidine uptake. In addition, mutations in different regions of the SSSF domain abolished signal transduction. Site-specific mutations were made at four conserved residues: W55 and G172 (SSSF domain), H766 (H box), and N876 (N box). The mutations W55G, G172H, and N876G compromised histidine transport but had minimal effects on signal transduction. The H766G mutation abolished both transport and signal transduction, but the capacity to transport histidine was restored upon complementation with a transport-defective allele of CbrA, most likely due to interdomain interactions. Our combined data implicate the SSSF domain of CbrA in histidine transport and suggest that transport is coupled to signal transduction. IMPORTANCE Nutrient acquisition in bacteria typically involves membrane-bound sensors that, via cognate response regulators, determine the activity of specific transporters. However, nutrient perception and uptake are often coupled processes. Thus, from a physiological perspective, it would make sense for systems that couple the process of signaling and transport within a single protein and where transport is itself the stimulus that precipitates signal transduction to have evolved. The CbrA regulator in Pseudomonas represents a unique type of sensor kinase whose autokinase domain is connected to a transporter domain. We present genetic and biochemical evidence that suggests that CbrA plays a dual role in histidine uptake and sensing and that transport is dependent on signal transduction.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3