Combinatorial control of Pseudomonas aeruginosa biofilm development by quorum-sensing and nutrient-sensing regulators

Author:

Chen Gong1,Fanouraki Georgia1,Anandhi Rangarajan Aathmaja2ORCID,Winkelman Bradford T.3,Winkelman Jared T.1,Waters Christopher M.2ORCID,Mukherjee Sampriti1ORCID

Affiliation:

1. Department of Molecular Genetics & Cell Biology, The University of Chicago, Chicago, Illinois, USA

2. Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA

3. Trestle, LLC, Milwaukee, Wisconsin, USA

Abstract

ABSTRACT The human pathogen Pseudomonas aeruginosa , a leading cause of hospital-acquired infections, inhabits and forms sessile antibiotic-resistant communities called biofilms in a wide range of biotic and abiotic environments. In this study, we examined how two global sensory signaling pathways—the RhlR quorum-sensing system and the CbrA/CbrB nutritional adaptation system—intersect to control biofilm development. Previous work has shown that individually these two systems repress biofilm formation. Here, we used biofilm analyses, RNA-seq, and reporter assays to explore the combined effect of information flow through RhlR and CbrA on biofilm development. We find that the Δ rhlR Δ cbrA double mutant exhibits a biofilm morphology and an associated transcriptional response distinct from wildtype and the parent Δ rhlR and Δ cbrA mutants indicating codominance of each signaling pathway. The Δ rhlR Δ cbrA mutant gains suppressor mutations that allow biofilm expansion; these mutations map to the crc gene resulting in loss of function of the carbon catabolite repression protein Crc. Furthermore, the combined absence of RhlR and CbrA leads to a drastic reduction in the abundance of the Crc antagonist small RNA CrcZ. Thus, CrcZ acts as the molecular convergence point for quorum- and nutrient-sensing cues. We find that in the absence of antagonism by CrcZ, Crc promotes the expression of biofilm matrix components—Pel exopolysaccharide, and CupB and CupC fimbriae. Therefore, this study uncovers a regulatory link between nutritional adaption and quorum sensing with potential implications for anti-biofilm targeting strategies. IMPORTANCE Bacteria often form multicellular communities encased in an extracytoplasmic matrix called biofilms. Biofilm development is controlled by various environmental stimuli that are decoded and converted into appropriate cellular responses. To understand how information from two distinct stimuli is integrated, we used biofilm formation in the human pathogen Pseudomonas aeruginosa as a model and studied the intersection of two global sensory signaling pathways—quorum sensing and nutritional adaptation. Global transcriptomics on biofilm cells and reporter assays suggest parallel regulation of biofilms by each pathway that converges on the abundance of a small RNA antagonist of the carbon catabolite repression protein, Crc. We find a new role of Crc as it modulates the expression of biofilm matrix components in response to the environment. These results expand our understanding of the genetic regulatory strategies that allow P. aeruginosa to successfully develop biofilm communities.

Funder

HHS | NIH | National Institute of General Medical Sciences

Searle Scholars Program

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3