An Intradermal Environment Promotes a Protective Type-1 Response against Lethal Systemic Monocytotropic Ehrlichial Infection

Author:

Stevenson Heather L.1,Jordan Jeffrey M.1,Peerwani Ziad1,Wang Hui-Qun1,Walker David H.1,Ismail Nahed1

Affiliation:

1. Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas

Abstract

ABSTRACT Immune responses against monocytotropic ehrlichiosis during infection with a strain of Ehrlichia from Ixodes ovatus (IOE) were evaluated using a model that closely reproduces the pathology and immunity associated with tick-transmitted human monocytotropic ehrlichiosis. C57BL/6 mice were inoculated intradermally or intraperitoneally with high-dose highly virulent IOE or intraperitoneally with mildly virulent Ehrlichia muris . Intradermal (i.d.) infection with IOE established mild, self-limited disease associated with minimal hepatic apoptosis, and all mice survived past 30 days. Intraperitoneal (i.p.) infection with IOE resulted in acute, severe toxic shock-like syndrome and severe multifocal hepatic apoptosis and necrosis, and all mice succumbed to disease. Compared to i.p. infection with IOE, intradermally infected mice had a 100- to 1,000-fold lower bacterial load in the spleen with limited dissemination. Compared to mice infected intraperitoneally with IOE, i.d. infection stimulated a stronger protective type-1 cell-mediated response on day 7 of infection, characterized by increased percentages of both CD4 + and CD8 + splenic T cells, generation of a greater number of IOE-specific, gamma interferon-producing CD4 + Th1 cells, and higher levels of tumor necrosis factor (TNF-α) in the spleen but lower concentrations of serum TNF-α and interleukin-10. These data suggest that under the conditions of natural route of challenge (i.e., i.d. inoculation), the immune response has the capacity to confer complete protection against monocytotropic ehrlichiosis, which is associated with a strong cell-mediated type-1 response and decreased systemic production of pro- and anti-inflammatory cytokines.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3