Whole-Genome Analysis of Antimicrobial-Resistant and Extraintestinal Pathogenic Escherichia coli in River Water

Author:

Gomi Ryota1,Matsuda Tomonari2,Matsumura Yasufumi3ORCID,Yamamoto Masaki3,Tanaka Michio3,Ichiyama Satoshi3,Yoneda Minoru1

Affiliation:

1. Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

2. Research Center for Environmental Quality Management, Kyoto University, Otsu, Japan

3. Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan

Abstract

ABSTRACT Contamination of surface waters by antimicrobial-resistant bacteria and pathogenic bacteria is a great concern. In this study, 531 Escherichia coli isolates obtained from the Yamato River in Japan were evaluated phenotypically for resistance to 25 antimicrobials. Seventy-six isolates (14.3%) were multidrug resistant (MDR), 66 (12.4%) were nonsusceptible to one or two classes of agents, and 389 (73.3%) were susceptible. We performed whole-genome sequencing of selected strains by using Illumina technology. In total, the genome sequences of 155 strains were analyzed for antibiotic resistance determinants and phylogenetic characteristics. More than 50 different resistance determinants, including acquired resistance genes and chromosomal resistance mutations, were detected. Among the sequenced MDR strains ( n = 66), sequence type 155 (ST155) complex ( n = 9), ST10 complex ( n = 9), and ST69 complex ( n = 7) were prevalent. Among extraintestinal pathogenic E. coli (ExPEC) strains ( n = 58), clinically important clonal groups, namely, ST95 complex ( n = 18), ST127 complex ( n = 8), ST12 complex ( n = 6), ST14 complex ( n = 6), and ST131 complex ( n = 6), were prevalent, demonstrating the clonal distribution of environmental ExPEC strains. Typing of the fimH (type 1 fimbrial adhesin) gene revealed that ST131 complex strains carried fimH22 or fimH41 , and no strains belonging to the fimH30 subgroup were detected. Fine-scale phylogenetic analysis and virulence gene content analysis of strains belonging to the ST95 complex (one of the major clonal ExPEC groups causing community-onset infections) revealed no significant differences between environmental and clinical strains. The results indicate contamination of surface waters by E. coli strains belonging to clinically important clonal groups. IMPORTANCE The prevalence of antimicrobial-resistant and pathogenic E. coli strains in surface waters is a concern because surface waters are used as sources for drinking water, irrigation, and recreational purposes. In this study, MDR and ExPEC strains in river water were characterized by genomic sequencing and analysis. We detected more than 50 resistance determinants and identified clonal groups specific to MDR and ExPEC strains. This study showed contamination of surface waters by E. coli strains belonging to clinically important clonal groups. Overall, this study advances our understanding of environmental MDR and ExPEC strains.

Funder

the Sasakawa Scientific Research Grant from The Japan Science Society

the River Fund in charge of The River Foundation, Japan

Kyoto University's Global Survivability Studies (GSS) program

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3