Author:
Mardanov Andrey V.,Slododkina Galina B.,Slobodkin Alexander I.,Beletsky Alexey V.,Gavrilov Sergey N.,Kublanov Ilya V.,Bonch-Osmolovskaya Elizaveta A.,Skryabin Konstantin G.,Ravin Nikolai V.
Abstract
ABSTRACTGeoglobus acetivoransis a hyperthermophilic anaerobic euryarchaeon of the orderArchaeoglobalesisolated from deep-sea hydrothermal vents. A unique physiological feature of the members of the genusGeoglobusis their obligate dependence on Fe(III) reduction, which plays an important role in the geochemistry of hydrothermal systems. The features of this organism and its complete 1,860,815-bp genome sequence are described in this report. Genome analysis revealed pathways enabling oxidation of molecular hydrogen, proteinaceous substrates, fatty acids, aromatic compounds,n-alkanes, and organic acids, including acetate, through anaerobic respiration linked to Fe(III) reduction. Consistent with the inability ofG. acetivoransto grow on carbohydrates, the modified Embden-Meyerhof pathway encoded by the genome is incomplete. Autotrophic CO2fixation is enabled by the Wood-Ljungdahl pathway. Reduction of insoluble poorly crystalline Fe(III) oxide depends on the transfer of electrons from the quinone pool to multihemec-type cytochromes exposed on the cell surface. Direct contact of the cells and Fe(III) oxide particles could be facilitated by pilus-like appendages. Genome analysis indicated the presence of metabolic pathways for anaerobic degradation of aromatic compounds andn-alkanes, although an ability ofG. acetivoransto grow on these substrates was not observed in laboratory experiments. Overall, our results suggest thatGeoglobusspecies could play an important role in microbial communities of deep-sea hydrothermal vents as lithoautotrophic producers. An additional role as decomposers would close the biogeochemical cycle of carbon through complete mineralization of various organic compounds via Fe(III) respiration.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献