Proteomic Analysis of Trichoderma atroviride Reveals Independent Roles for Transcription Factors BLR-1 and BLR-2 in Light and Darkness

Author:

Sánchez-Arreguín Alejandro1,Pérez-Martínez Ana Silvia1,Herrera-Estrella Alfredo1

Affiliation:

1. Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México

Abstract

ABSTRACT The genus Trichoderma is one of the most widely used biological control agents of plant-pathogenic fungi. The main mechanism for survival and dispersal of Trichoderma is through the production of asexual spores (conidia). The transition from filamentous growth to conidiation can be triggered by light, nutrient deprivation, and mechanical damage of the mycelium. We conducted proteomic profiling analyses of Trichoderma atroviride after a blue light pulse. The use of two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) analysis allowed us to identify 72 proteins whose expression was affected by blue light. Functional category analysis showed that the various proteins are involved in metabolism, cell rescue, and protein synthesis. We determined the relationship between mRNA levels of selected genes 30 min after a light pulse and protein expression levels at different times after the pulse and found this correlation to be very weak. The correlation was highest when protein and mRNA levels were compared for the same time point. The transcription factors BLR-1 and BLR-2 are vital to the photoconidiation process; here we demonstrate that both BLR proteins are active in darkness and affect several elements at both the transcript and protein levels. Unexpectedly, in darkness, downregulation of proteins prevailed in the Δ blr-1 mutant, while upregulation of proteins predominated in the Δ blr-2 mutant. Our data demonstrate that the BLR proteins play roles individually and as a complex.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3