Kinetics of nirS Expression (Cytochrome cd 1 Nitrite Reductase) in Pseudomonas stutzeri during the Transition from Aerobic Respiration to Denitrification: Evidence for a Denitrification-Specific Nitrate- and Nitrite-Responsive Regulatory System

Author:

Härtig Elisabeth1,Zumft Walter G.1

Affiliation:

1. Lehrstuhl für Mikrobiologie der Universität zu Karlsruhe, Karlsruhe, Germany

Abstract

ABSTRACT After shifting an oxygen-respiring culture of Pseudomonas stutzeri to nitrate or nitrite respiration, we directly monitored the expression of the nirS gene by mRNA analysis. nirS encodes the 62-kDa subunit of the homodimeric cytochrome cd 1 nitrite reductase involved in denitrification. Information was sought about the requirements for gene activation, potential regulators of such activation, and signal transduction pathways triggered by the alternative respiratory substrates. We found that nirS , together with nirT and nirB (which encode tetra- and diheme cytochromes, respectively), is part of a 3.4-kb operon. In addition, we found a 2-kb monocistronic transcript. The half-life of each of these messages was approximately 13 min in denitrifying cells with a doubling time of around 2.5 h. When the culture was subjected to a low oxygen tension, we observed a transient expression of nirS lasting for about 30 min. The continued transcription of the nirS operon required the presence of nitrate or nitrite. This anaerobically manifested N -oxide response was maintained in nitrate sensor (NarX) and response regulator (NarL) knockout strains. Similar mRNA stability and transition kinetics were observed for the norCB operon, encoding the NO reductase complex, and the nosZ gene, encoding nitrous oxide reductase. Our results suggest that a nitrate- and nitrite-responsive regulatory circuit independent of NarXL is necessary for the activation of denitrification genes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3