Characteristics of Nitrogen Removal and Functional Gene Transcription of Heterotrophic Nitrification-Aerobic Denitrification Strain, Acinetobacter sp. JQ1004

Author:

Hou Liangang1,Huang Feng1,Pan Zhengwei1,Chen Wei12,Wang Xiujie3

Affiliation:

1. Water & Environmental Protection Department, China Construction First Group Construction & Development Co., Ltd., Beijing 100102, China

2. China Construction First Group Corporation Limited, Beijing 100161, China

3. The College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

In this study, the heterotrophic nitrification–aerobic denitrification strain JQ1004 was investigated in terms of its nitrogen removal mechanism and kinetic properties, laying the foundation for its application in the field of wastewater treatment. Nitrogen balance analysis revealed that the final metabolic product was N2, and approximately 54.61% of N was converted into cellular structure through assimilation. According to the fitting of the Compertz model, the maximum degradation rates of ammonia and nitrate were 7.93 mg/(L·h) and 4.08 mg/(L·h), respectively. A weakly alkaline environment was conducive to N removal, and the sensitivity of functional genes to acidic environments was amoA > nirS > narG. An appropriate increase in dissolved oxygen significantly enhanced heterotrophic nitrification activity, and notably, the denitrification-related functional gene narG exhibited greater tolerance to dissolved oxygen compared to nirS. The transcription level of amoA was significantly higher than that of narG or nirS, confirming that there might have been direct ammonia oxidation metabolic pathways (NH4+→NH2OH→N2) besides the complete nitrification and denitrification pathway. The annotation of nitrogen assimilation-related functional genes (including gltB, gltD, glnA, nasA, nirB, narK, nrtP, cynT, and gdhA genes) in the whole-genome sequencing analysis further confirmed the high assimilation nitrogen activity of the HN-AD strain.

Funder

Science and Technology R&D Plan of China Construction First Group Co., Ltd

Jiangsu Province Natural Science Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3