Class C β-Lactamases Operate at the Diffusion Limit for Turnover of Their Preferred Cephalosporin Substrates

Author:

Bulychev Alexey1,Mobashery Shahriar1

Affiliation:

1. Department of Chemistry, Wayne State University, Detroit, Michigan 48202

Abstract

ABSTRACT It has been suggested that class C β-lactamases have evolved to carry out a metabolic reaction other than hydrolysis of β-lactam antibiotics. It is demonstrated in the present study that the class C β-lactamase from Enterobacter cloacae P99 has reached the diffusion limit in its ability to hydrolyze its preferred cephalosporin substrates. The increase in the solution viscosity by addition of a microviscogen (sucrose) caused the decline in the parameter k cat / K m for hydrolysis of cephaloridine and cephalosporin C (approximately 2.5-fold at a relative viscosity of 2.9). A similar increase in viscosity has no effect on the turnover rate of the poorer substrates cefepime and penicillin G. Addition of a macroviscogen (polyethylene glycol) to the reaction mixture did not change the rate of turnover for any of the substrates tested because in this case the viscogen would not interfere with the motion of small molecules, as was expected. Therefore, it would appear that the driving force behind the evolution of this class C β-lactamase and, in principle, other enzymes of this class is indeed the functional reaction of this enzyme as a drug resistance factor.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3