Binding of the Src SH2 domain to phosphopeptides is determined by residues in both the SH2 domain and the phosphopeptides

Author:

Bibbins K B1,Boeuf H1,Varmus H E1

Affiliation:

1. Department of Microbiology and Immunology, University of California at San Francisco 94143.

Abstract

Src homology 2 (SH2) domains are found in a variety of signaling proteins and bind phosphotyrosine-containing peptide sequences. To explore the binding properties of the SH2 domain of the Src protein kinase, we used immobilized phosphopeptides to bind purified glutathione S-transferase-Src SH2 fusion proteins. With this assay, as well as a free-peptide competition assay, we have estimated the affinities of the Src SH2 domain for various phosphopeptides relative to a Src SH2-phosphopeptide interaction whose Kd has been determined previously (YEEI-P; Kd = 4 nM). Two Src-derived phosphopeptides, one containing the regulatory C-terminal Tyr-527 and another containing the autophosphorylation site Tyr-416, bind the Src SH2 domain in a specific though low-affinity manner (with about 10(4)-lower affinity than the YEEI-P peptide). A platelet-derived growth factor receptor (PDGF-R) phosphopeptide containing Tyr-857 does not bind appreciably to the Src SH2 domain, suggesting it is not the PDGF-R binding site for Src as previously reported. However, another PDGF-R-derived phosphopeptide containing Tyr-751 does bind the Src SH2 domain (with an affinity approximately 2 orders of magnitude lower than that of YEEI-P). All of the phosphopeptides which bind to the Src SH2 domain contain a glutamic acid at position -3 or -4 with respect to phosphotyrosine; changing this residue to alanine greatly diminishes binding. We have also tested Src SH2 mutants for their binding properties and have interpreted our results in light of the recent crystal structure solution for the Src SH2 domain. Mutations in various conserved and nonconserved residues (R155A, R155K, N198E, H201R, and H201L) cause slight reductions in binding, while two mutations cause severe reductions. The W148E mutant domain, which alters the invariant tryptophan that marks the N-terminal border of the SH2 domain, binds poorly to phosphopeptides. Inclusion of the SH3 domain in the fusion protein partially restores the binding by the W148E mutant. A change in the invariant arginine that coordinates twice with phosphotyrosine in the peptide (R175L) results in a nearly complete loss of binding. The R175L mutant does display high affinity for the PDGF-R peptide containing Tyr-751, via an interaction that is at least partly phosphotyrosine independent. We have used this interaction to show that the R175L mutation also disrupts the intramolecular interaction between the Src SH2 domain and the phosphorylated C terminus within the context of the entire Src protein; thus, the binding properties observed for mutant domains in an in vitro assay appear to mimic those that occur in vivo.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference47 articles.

1. Binding of SH2 domains to phospholipase Cyl, GAP and Src to activated growth factor receptors;Anderson D.;Science,1990

2. la.Boeuf H. J. E. Murphy K. B. Bibbins and H. E. Varmus. Unpublished data.

3. Brodeur S. D. B. Eisen S. L. Groskoph A. J. Tanner X. Zhang D. Shalloway and A. P. Laudano. Unpublished data.

4. Oncogenes and signal transduction;Cantley L. C.;Cell,1991

5. The carboxy terminus of pp 60oc-s? is a regulatory domain and is involved in complex formation with the middle-T antigen of polyomavirus;Cheng S. H.;Mol. Cell. Biol.,1988

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3