Activated Fes Protein Tyrosine Kinase Induces Terminal Macrophage Differentiation of Myeloid Progenitors (U937 Cells) and Activation of the Transcription Factor PU.1

Author:

Kim Jynho1,Feldman Ricardo A.1

Affiliation:

1. Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201

Abstract

ABSTRACT The c- fps / fes proto-oncogene encodes a 92-kDa protein tyrosine kinase that is preferentially expressed in myeloid and endothelial cells. Fes is believed to play a role in vascular development and myelopoiesis and in the inflammatory responses of granulocytes and macrophages. To help define the biological role of this kinase and identify its downstream targets, we have developed a gain-of-function allele of Fes that has potent biological activity in myeloid cell progenitors. Introduction of constitutively active Fes into bipotential U937 cells induced the appearance of fully differentiated macrophages within 6 to 12 days. The Fes-expressing differentiated cells became adherent, had distinctive macrophage morphology, and exhibited increased expression of myelomonocytic differentiation markers, including CD11b, CD11c, CD18, CD14, and the macrophage colony-stimulating factor receptor. These cells acquired phagocytic properties and exhibited NADPH oxidase and nonspecific esterase activities, confirming that they were functionally active macrophages. Concomitantly, there was downregulation of the granulocytic marker granulocyte colony-stimulating factor receptor, indicating that the biological activity of Fes was coordinated in a lineage-specific manner. A constitutively active Src did not induce macrophage morphology or upregulation of myelomonocytic markers in U937 cells, suggesting that the biological activity we observed was not a general consequence of expression of an activated nonreceptor tyrosine kinase. Analysis of possible downstream targets of Fes revealed that this kinase activated the ets family transcription factor PU.1, which is essential for macrophage development. Our results strongly implicate Fes as a key regulator of terminal macrophage differentiation and identify PU.1 as a transcription factor that may mediate some of its biological activities in myeloid cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3