Genetic competence in Bacillus subtilis

Author:

Dubnau D1

Affiliation:

1. Department of Microbiology, Public Health Research Institute, New York, New York 10016.

Abstract

Genetic competence may be defined as a physiological state enabling a bacterial culture to bind and take up high-molecular-weight exogenous DNA (transformation). In Bacillus subtilis, competence develops postexponentially and only in certain media. In addition, only a minority of the cells in a competent culture become competent, and these are physiologically distinct. Thus, competence is subject to three regulatory modalities: growth stage specific, nutritionally responsive, and cell type specific. This review summarizes the present state of knowledge concerning competence in B. subtilis. The study of genes required for transformability has permitted their classification into two broad categories. Late competence genes are expressed under competence control and specify products required for the binding, uptake, and processing of transforming DNA. Regulatory genes specify products that are needed for the expression of the late genes. Several of the late competence gene products have been shown to be membrane localized, and others are predicted to be membrane associated on the basis of amino acid sequence data. Several of these predicted protein sequences show a striking resemblance to gene products that are involved in the export and/or assembly of extracellular proteins and structures in gram-negative organisms. This observation is consistent with the idea that the late products are directly involved in transport of DNA and is equally consistent with the notion that they play a morphogenetic role in the assembly of a transport apparatus. The competence regulatory apparatus constitutes an elaborate signal transduction system that senses and interprets environmental information and passes this information to the competence-specific transcriptional machinery. Many of the regulatory gene products have been identified and partially characterized, and their interactions have been studied genetically and in some cases biochemically as well. These include several histidine kinase and response regulator members of the bacterial two-component signal transduction machinery, as well as a number of known transcriptionally active proteins. Results of genetic studies are consistent with the notion that the regulatory proteins interact in a hierarchical way to make up a regulatory pathway, and it is possible to propose a provisional scheme for the organization of this pathway. It is remarkable that almost all of the regulatory gene products appear to play roles in the control of various forms of postexponential expression in addition to competence, e.g., sporulation, degradative-enzyme production, motility, and antibiotic production. This has led to the notion of a signal transduction network which transduces environmental information to determine the levels and timing of expression of the ultimate products characteristic of each of these systems.

Publisher

American Society for Microbiology

Subject

Applied Microbiology and Biotechnology

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3