Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon

Author:

Albano M1,Breitling R1,Dubnau D A1

Affiliation:

1. Department of Microbiology, Public Health Research Institute, New York, New York 10016.

Abstract

A series of Tn917lac insertions define the comG region of the Bacillus subtilis chromosome. comG mutants are deficient in competence and specifically in the binding of exogenous DNA. The genes included in the comG region are first expressed during the transition from the exponential to the stationary growth phase. From nucleotide sequence information, it was concluded that the comG locus contains seven open reading frames (ORFs), several of which overlap at their termini. High-resolution S1 nuclease mapping and primer extension were used to identify the 5' terminus of the comG mRNA. The sequence upstream from the comG start site closely resembled the consensus recognition sequence for the major B. subtilis vegetative RNA polymerase holoenzyme. Complementation analysis confirmed that the comG ORF1 protein is required for the ability of competent cultures to resolve into two populations with different cell densities on Renografin (E. R. Squibb & Sons, Princeton, N.J.) gradients, as well as for full expression of comE, another late competence locus. The predicted comG ORF1 protein showed significant similarity to the virB ORF11 protein from Agrobacterium tumefaciens, which is probably involved in T-DNA transfer. The N-terminal sequences of comG ORF3 and, to a lesser extent, the comG ORF4 and ORF5 proteins were similar to a class of pilin proteins from members of the genera Bacteroides, Pseudomonas, Neisseria, and Moraxella. All of the comG proteins except comG ORF1 possessed hydrophobic domains that were potentially capable of spanning the bacterial membrane. It is likely that these proteins are membrane associated, and they may comprise part of the DNA transport machinery. When present in multiple copies, a DNA fragment carrying the comG promoter was capable of inhibiting the development of competence as well as the expression of several late com genes, suggesting a role for a transcriptional activator in the expression of those genes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3