Affiliation:
1. Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
Abstract
The acetohydroxy acid synthase (AHAS) isozymes from enterobacteria are each composed of a large and small subunit in an alpha 2 beta 2 structure. It has been generally accepted that the large (ca. 60-kDa) subunits are catalytic, while the small ones are regulatory. In order to further characterize the roles of the subunits as well as the nature and the specificities of their interactions, we have constructed plasmids encoding the large or small subunits of isozymes AHAS I and AHAS III, each with limited remnants of the other peptide. The catalytic properties of the large subunits have been characterized and compared with those of extracts containing the intact enzyme or of purified enzymes. Antisera to the isolated subunits have been used in Western blot (immunoblot) analyses for qualitative and semiquantitative determinations of the presence of the polypeptides in extracts. The large subunits of AHAS isozymes I and III have lower activities than the intact enzymes: Vmax/Km is 20 to 50 times lower in both cases. However, for AHAS I, most of this difference is due to the raised Km of the large subunit alone, while for AHAS III, it is due to a lowered Vmax. The substrate specificities, R, of large subunits are close to those of the intact enzymes. The catalytic activity of the large subunits of AHAS I is dependent on flavin adenine dinucleotide (FAD), as is that of the intact enzyme, although the apparent affinities of the large subunits alone for FAD are 10-fold lower. Isolated subunits are insensitive to valine inhibition. Nearly all of the properties of the intact AHAS isozyme I or III can be reconstituted by mixing extracts containing the respective large and small subunits. The mixing of subunits from different enzymes does not lead to activation of the large subunits. It is concluded that the catalytic machinery of these AHAS isozymes is entirely contained within the large subunits. The small subunits are required, however, for specific stabilization of an active conformation of the large subunits as well as for value sensitivity.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献