Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria

Author:

Barak Z,Chipman D M,Gollop N

Abstract

The rates of formation of the two alternative products of acetohydroxy acid synthase (AHAS) have been determined by a new analytical method (N. Gollop, Z. Barak, and D. M. Chipman, Anal. Biochem., 160:323-331, 1987). For each of the three distinct isozymes of AHAS in Escherichia coli and Salmonella typhimurium, a specificity ratio, R, was defined: Formula: see text, which is constant over a wide range of substrate concentrations. This is consistent with competition between pyruvate and 2-ketobutyrate for an active acetaldehyde intermediate formed irreversibly after addition of the first pyruvate moiety to the enzyme. Isozyme I showed no product preference (R = 1), whereas isozymes II and III form acetohydroxybutyrate (AHB) at approximately 180- and 60-fold faster rates, respectively, than acetolactate (AL) at equal pyruvate and 2-ketobutyrate concentrations. R values higher than 60 represent remarkably high specificity in favor of the substrate with one extra methylene group. In exponentially growing E. coli cells (under aerobic growth on glucose), which contain about 300 microM pyruvate and only 3 microM 2-ketobutyrate, AHAS I would produce almost entirely AL and only 1 to 2% AHB. However, isozymes II and III would synthesize AHB (on the pathway to Ile) and AL (on the pathway to valine-leucine) in essentially the ratio required for protein synthesis. The specificity ratio R of any AHAS isozyme was affected neither by the natural feedback inhibitors (Val, Ile) nor by the pH. On the basis of the specificities of the isozymes, the known regulation of AHAS I expression by the catabolite repression system, and the reported behavior of bacterial mutants containing single AHAS isozymes, we suggest that AHAS I enables a bacterium to cope with poor carbon sources, which lead to low endogenous pyruvate concentrations. Although AHAS II and III are well suited to producing the branched-chain amino acid precursors during growth on glucose, they would fail to provide appropriate quantities of AL when the concentration of pyruvate is relatively low.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference30 articles.

1. Determination of carbon isotope effects and substrate preference for acetolactate synthase by isotope-ratio mass spectroscopy;Abell L. M.;Biochemistry,1985

2. Allosteric interaction on biosynthetic L-threonine deaminase from E. coli K-12;Changeux J. P.;Cold Spring Harbor Symp. Quant. Biol.,1963

3. Acetohydroxy acid synthase I, a required enzyme for isoleucine and valine biosynthesis in Escherichia coli K-12 during growth on acetate as sole carbon source;Dailey F. E.;J. Bacteriol.,1986

4. 2-Ketobutyrate: a putative Escherichia coli K-12 alarmone;Daniel J.;Mol. Gen. Genet.,1983

5. The acetohydroxy acid synthase isoenzymes of Escherichia coli and Salmonella typhimurium;DeFelice M.;Ann. Microbiol. (Paris),1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3