Molecular genetic approaches to decrease the uncontrolled misincorporation of non-canonical branched chain amino acids into recombinant mini-proinsulin expressed in Escherichia coli

Author:

García Ángel Córcoles,Hauptmann Peter,Neubauer PeterORCID

Abstract

AbstractThe uncontrolled incorporation of non-canonical branched chain amino acids (ncBCAAs) such as norleucine, norvaline and β-methylnorleucine into recombinant proteins in E. coli production processes is a crucial problem in the pharmaceutical industry, since it can lead to the production of altered proteins with non-optimal characteristics. Despite various solutions, to date there are no engineered strains that exhibit a reduced accumulation of these ncBAAs. In this study, novel E. coli K-12 BW25113 strains with exogenous tunable expression of target genes of the BCAA biosynthetic pathway were developed. For this purpose, single gene knock-outs for thrA, ilvA, leuA, ilvIH, ilvBN, ilvGM and ilvC were complemented with plasmids containing the respective genes under control of an arabinose promoter. These clones were screened in a mL-bioreactor system in fed-batch mode under both standard cultivation conditions and with pyruvate pulses, and induction of a min-proinsulin. Screening was performed by comparing the impurity profile of the recombinant mini-proinsulin expressed of each clone with the E. coli BW25113 WT strain, and the most promising clones were cultivated in a 15L Screening showed that up-regulation of ilvC, ilvIH and ilvGM, and downregulation of leuA and ilvBN trigger a reduction of norvaline and norleucine accumulation and misincorporation into mini-proinsulin. The stirred tank bioreactor cultivations confirmed that up-regulation of ilvIH and ilvGM were most effective to reduce the ncBCAA misincorporation. This novel approach for a reduced ncBCAA misincorporation may be solution to this old challenging problem in the large-scale production of human therapeutics.

Funder

Horizon 2020

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3