Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps

Author:

Roberts J R1,Lu W P1,Ragsdale S W1

Affiliation:

1. Department of Chemistry, University of Wisconsin, Milwaukee 53201.

Abstract

Many anaerobic bacteria fix CO2 via the acetyl-coenzyme A (CoA) (Wood) pathway. Carbon monoxide dehydrogenase (CODH), a corrinoid/iron-sulfur protein (C/Fe-SP), methyltransferase (MeTr), and an electron transfer protein such as ferredoxin II play pivotal roles in the conversion of methyltetrahydrofolate (CH3-H4folate), CO, and CoA to acetyl-CoA. In the study reported here, our goals were (i) to optimize the method for determining the activity of the synthesis of acetyl-CoA, (ii) to evaluate how closely the rate of synthesis of acetyl-CoA by purified enzymes approaches the rate at which whole cells synthesize acetate, and (iii) to determine which steps limit the rate of acetyl-CoA synthesis. In this study, CODH, MeTr, C/Fe-SP, and ferredoxin were purified from Clostridium thermoaceticum to apparent homogeneity. We optimized conditions for studying the synthesis of acetyl-CoA and found that when the reaction is dependent upon MeTr, the rate is 5.3 mumol min-1 mg-1 of MeTr. This rate is approximately 10-fold higher than that reported previously and is as fast as that predicted on the basis of the rate of in vivo acetate synthesis. When the reaction is dependent upon CODH, the rate of acetyl-CoA synthesis is approximately 0.82 mumol min-1 mg-1, approximately 10-fold higher than that observed previously; however, it is still lower than the rate of in vivo acetate synthesis. It appears that at least two steps in the overall synthesis of acetyl-CoA from CH3-H4folate, CO, and CoA can be partially rate limiting. At optimal conditions of low pH (approximately 5.8) and low ionic strength, the rate-limiting step involves methylation of CODH by the methylated C/Fe-SP. At higher pH values and/or higher ionic strength, transfer of the methyl group of CH3-H4folate to the C/Fe-SP becomes rate limiting.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference48 articles.

1. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2;Andreesen J. R.;J. Bacteriol.,1973

2. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum;Baronofsky J. J.;Appl. Environ. Microbiol.,1984

3. Characterization of the recombinant Clostridium pasteurianum ferredoxin and comparison of its properties with those of the native protein;Baur J. R.;Biofactors,1990

4. Carrier-mediated acetate transport in Acetobacterium woodii;Boenigk R.;Arch. Microbiol.,1989

5. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui;Daniel S. L.;J. Bacteriol.,1990

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3