Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui

Author:

Daniel S L1,Hsu T1,Dean S I1,Drake H L1

Affiliation:

1. Department of Biology, University of Mississippi, University 38677.

Abstract

Strains of Clostridium thermoaceticum were tested for H2- and CO-dependent growth in a defined medium containing metals, minerals, vitamins, cysteine-sulfide, CO2-bicarbonate, and H2 or CO. Ten of the thirteen strains tested grew at the expense of H2 and CO, and C. thermoaceticum ATCC 39073 was chosen for further study. The doubling times for H2- and CO-dependent growth under chemolithotrophic conditions (the defined medium with nicotinic acid as sole essential vitamin and sulfide as sole reducer) were 25 and 10 h, respectively. Product stiochiometries for chemolithotrophic cultures approximated: 4.1H2 + 2.4CO2----CH3COOH + 0.1 cell C + 0.3 unrecovered C and 6.8CO----CH3COOH + 3.5CO2 + 0.4 cell C + 0.9 unrecovered C. H2-dependent growth produced significantly higher acetate concentrations per unit of biomass synthesized than did CO- or glucose-dependent growth. In contrast, the doubling time for H2-dependent growth under chemolithotrophic conditions (the defined medium without vitamins and sulfide as sole reducer) by Acetogenium kivui ATCC 33488 was 2.7 h; as a sole energy source, CO was not growth supportive for A. kivui. The YH2 values for A. kivui and C. thermoaceticum were 0.91 and 0.46 g of cell dry weight per mol of H2 consumed, respectively; the YCO value for C. thermoaceticum was 1.28 g of cell dry weight per mol of CO consumed. The specific activities of hydrogenase and CO dehydrogenase in both acetogens were influenced by the energy source utilized for growth and were significantly lower in C. thermoaceticum than in A. kivui. With extracts of H2-cultivated cells and benzyl viologen as electron acceptor, the Vmax values for hydrogenase from C. thermoaceticum and A. kivui were 155.7 and 1,670 micromoles of H2 oxidized per min mg of protein, respectively; the Vmax values for CO dehydrogenase from C. thermoaceticum and A. kivui were 90.6 and 2,973 micromoles of CO oxidized per min per mg of protein, respectively.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3