Affiliation:
1. Department of Microbiology, University of Connecticut Health Center, Farmington 06030.
Abstract
The proper placement of the cell division site in Escherichia coli requires the site-specific inactivation of potential division sites at the cell poles in a process that requires the coordinate action of the MinC, MinD, and MinE proteins. In the absence of MinE, the coordinate expression of MinC and MinD leads to a general inhibition of cell division. MinE gives topological specificity to the division inhibition process, so that the septation block is restricted to the cell poles. At normal levels of expression, both MinC and MinD are required for the division block. We show here that, when expressed at high levels, MinC acts as a division inhibitor even in the absence of MinD. The division inhibition that results from MinC overexpression in the absence of MinD is insensitive to the MinE topological specificity factor. The results suggest that MinC is the proximate cause of the septation block and that MinD plays two roles in the MinCDE system--it activates the MinC-dependent division inhibition mechanism and is also required for the sensitivity of the division inhibition system to the MinE topological specificity factor.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology