Cyclical MinD membrane affinity differences are not necessary for MinD gradient formation in Bacillus subtilis

Author:

Bohorquez Laura C12,Strahl Henrik3,Marenduzzo Davide4,Thiele Martin J35,Bürmann Frank36ORCID,Hamoen Leendert W1ORCID

Affiliation:

1. The Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam

2. FIND

3. The Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University

4. SUPA, School of Physics and Astronomy, The University of Edinburgh

5. Carl Zeiss Meditec AG

6. MRC Laboratory of Molecular Biology, Structural Studies Division

Abstract

Proteins can diffuse micrometers in seconds, yet bacterial cells are able to maintain stable protein gradients. The best studied bacterial protein gradient is the Min system of Escherichia coli . In rod-shaped bacteria the MinCD proteins prevent formation of minicells by inhibiting FtsZ polymerization close to the cell poles. In E. coli these proteins oscillate between cell poles within a minute, resulting in an increased MinCD concentration at the poles. This oscillation is caused by the interaction between MinD and the protein MinE, which form an ATP-driven reaction-diffusion system, whereby the ATPase MinD cycles between a monomeric cytosolic and a dimeric membrane attached states. Bacillus subtilis also has MinCD, but lacks MinE. In this case MinCD form a static gradient that requires the transmembrane protein MinJ, located at cell poles and cell division sites. A recent reaction-diffusion model was successful in recreating the MinD gradient in B. subtilis , assuming that MinD cycles between cytosol and membrane, like in E. coli . Here we show that the monomeric and dimeric states of B. subtilis MinD have comparable membrane affinities, that MinD interacts with MinJ as a dimer, and that MinJ is not required for membrane localization of MinD. Based on these new findings we tested different models, using kinetic Monte Carlo simulations, and found that a difference in diffusion rate between the monomer and dimer, rather than a difference in membrane affinity, is important for B. subtilis MinCD gradient formation.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3