Dynamic Evolution of the Human Immunodeficiency Virus Type 1 Pathogenic Factor, Nef

Author:

O'Neill Eduardo1,Kuo Lillian S.1,Krisko John F.1,Tomchick Diana R.2,Garcia J. Victor1,Foster John L.1

Affiliation:

1. Department of Internal Medicine, Division of Infectious Diseases

2. Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390

Abstract

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) early gene product Nef is a multifunctional protein that alters numerous pathways of T-cell function, including endocytosis, signal transduction, vesicular trafficking, and immune modulation, and is a major determinant of pathogenesis. Individual Nef functions include PAK-2 activation, CD4 downregulation, major histocompatibility complex (MHC) class I downregulation, and enhancement of viral particle infectivity. How Nef accomplishes its multiple tasks presents a difficult problem of mechanistic analysis because of the complications associated with multiple, overlapping functional domains in the context of significant sequence variability. To address these issues we determined the conservation of each Nef residue based on 1,643 subtype B Nef sequences. Mutational analysis based on conservative substitutions and Nef sequence data allowed us to search for amino acids on the surface of Nef that are specifically required for PAK-2 activation. We found residues 85, 89, and 191 to be highly significant determinants for Nef's PAK-2 activation function but functionally unlinked to CD4 and MHC class I downregulation or enhancement of infectivity. These residues are not conserved across HIV-1 subtypes but are confined to separate sets of surface elements within a subtype. Thus, L85/H89/F191 and F85/F89/R191 are dominant in subtype B and subtype E or C, respectively. Our results provide support for developing subtype-specific interventions in HIV-1 disease.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3