The Natural Osmolyte Trehalose Is a Positive Regulator of the Heat-Induced Activity of Yeast Heat Shock Transcription Factor

Author:

Conlin Laura K.1,Nelson Hillary C. M.1

Affiliation:

1. Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 813A Stellar-Chance, 422 Curie Blvd., Philadelphia, Pennsylvania 19104-6059

Abstract

ABSTRACT In Saccharomyces cerevisiae , the intracellular concentration of trehalose increases rapidly in response to many environmental stresses, including heat shock. These high trehalose levels have been correlated with tolerance to adverse conditions and led to the model that trehalose functions as a chemical cochaperone. Here, we show that the transcriptional activity of Hsf1 during the heat shock response depends on trehalose. Strains with low levels of trehalose have a diminished transcriptional response to heat shock, while strains with high levels of trehalose have an enhanced transcriptional response to heat shock. The enhanced transcriptional response does not require the other heat-responsive transcription factors Msn2/4 but is dependent upon heat and Hsf1. In addition, the phosphorylation levels of Hsf1 correlate with both transcriptional activity and the presence of trehalose. These in vivo results support a new role for trehalose, where trehalose directly modifies the dynamic range of Hsf1 activity and therefore influences heat shock protein mRNA levels in response to stress.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3